ETE816 - Magnetic Materials Design

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	ETE816 SEMESTER 8			
COURSE TITLE	Magnetic Materials Design			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Lee	ctures / Tutor	rials	3	3
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE	Specialized, skills development			
general background, special background, specialized general knowledge, skills development				
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	NO			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
 - Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Following the basic course on magnetic materials the students are introduced to problems related to the optimization magnetic materials under conflicting design requirements and updated to more specialized current research topics, at the forefront of knowledge in this field, with more emphasis to the connection of magnetism to other (transport, optical, mechanical, etc.) properties i.e. towards spintronic and multifunctional applications.

These skills are the basis for original thinking in magnetism and at the interface

with other in other electronic materials and sensor/actuator applications. They can prepare research studies and make scientific decisions related to the design, development, production, processing, quality control / certification of material related products.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsi
Working independently	and sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinkin
Working in an interdisciplinary environment	
Production of new research ideas	Others

bility

Search for, analysis and synthesis of data and information, with the use of the required technology. Decision-making, Working independently, Team work, Working in an interdisciplinary environment, Production of new research ideas, specialized problem-solving skills required in research and/or innovation in order to develop new knowledge and procedures and to integrate knowledge from different fields.

(3) SYLLABUS

Magnetic Circuits. Permanent Magnet systems. Device dependent optimization of permanent magnet materials. Hard-Soft Nanocomposites. Magnetocaloric refrigeration. Magnetic recording media and heads. Conflicting media requirements for ultra high density recording. Magnetoeletcronic Materials, Definition and measurement of spin polarization, Spintronics, Spin valves, Spin Hall effect, Spin Torque oscillators. Magnetization reversal by electric current. Polyferroic tunnel juctions. Magnetoeletric control of the magnetic state. Dynamics, Ballistic Switching, Microwave assisted Magnetization Revesal, Magnonics, Magnetooptical Switching. Interfacial Dzyaloshinskii-Moriya interaction, Skyrmions, topologically stable magnetic structures. Spin Ices.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	In class, lectures	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Lectures	39
fieldwork, study and analysis of		
bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching,	Self-study	36
educational visits, project, essay writing,		
artistic creativity, etc.		
The student's study hours for each learning		
directed study according to the principles of		1

the ECTS	Course total	75h
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	LANGUAGE OF EVALUATION METHOD OF EVALUATION: Final written examination, w assignments.	l: Greek rritten work, problem

(5) ATTACHED BIBLIOGRAPHY

-Suggested bibliography:

- "Magnetism and Magnetic Materials" J. M. D. COEY, Cambridge University Press 2009
- "Nanomagnetism and Spintronics" Teruya Shinjov Elsevier 2009
- Permanent Magnet Motor technology, G.F. Gieras, M. Wing, Marcel Dekker inc 2002
- «Simple Models of Magnetism» Ralph Skomski, 2006, Oxford University Press
- "Magnetism in Condensed Matter" Stephen Blundell, Publisher: Oxford University Press, USA, 2001
- "Modern Magnetic Materials: Principles and Applications", Robert C. O'Handley, 2000 John Wiley and Sons.

-Related academic journals:

- Journal of Magnetism and Magnetic Materials
- IEEE Transactions on Magnetics
- Journal of Applied Physics
- APL Materials